The Blow–up Rate for a Semilinear Parabolic Equation with a Nonlinear Boundary Condition

نویسنده

  • J. D. ROSSI
چکیده

In this paper we obtain the blow-up rate for positive solutions of ut = uxx−λu, in (0, 1)×(0, T ) with boundary conditions ux(1, t) = uq(1, t), ux(0, t) = 0. If p < 2q − 1 or p = 2q − 1, 0 < λ < q, we find that the behaviour of u is given by u(1, t) ∼ (T − t) − 1 2(q−1) and, if λ < 0 and p ≥ 2q − 1, the blow up rate is given by u(1, t) ∼ (T − t) − 1 p−1 . We also characterize the blow-up profile in similarity variables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blow-up analysis for a semilinear parabolic equation with nonlinear memory and nonlocal nonlinear boundary condition

In this paper, we consider a semilinear parabolic equation ut = ∆u + u q ∫ t 0 u(x, s)ds, x ∈ Ω, t > 0 with nonlocal nonlinear boundary condition u|∂Ω×(0,+∞) = ∫ Ω φ(x, y)u (y, t)dy and nonnegative initial data, where p, q ≥ 0 and l > 0. The blow-up criteria and the blow-up rate are obtained.

متن کامل

Some Blow-Up Problems For A Semilinear Parabolic Equation With A Potential

The blow-up rate estimate for the solution to a semilinear parabolic equation ut = ∆u+V (x)|u|p−1u in Ω×(0, T ) with 0-Dirichlet boundary condition is obtained. As an application, it is shown that the asymptotic behavior of blow-up time and blow-up set of the problem with nonnegative initial data u(x, 0) = Mφ(x) as M goes to infinity, which have been found in [5], are improved under some reason...

متن کامل

Numerical Blow-Up Time for a Semilinear Parabolic Equation with Nonlinear Boundary Conditions

We obtain some conditions under which the positive solution for semidiscretizations of the semilinear equation ut uxx − a x, t f u , 0 < x < 1, t ∈ 0, T , with boundary conditions ux 0, t 0, ux 1, t b t g u 1, t , blows up in a finite time and estimate its semidiscrete blow-up time. We also establish the convergence of the semidiscrete blow-up time and obtain some results about numerical blow-u...

متن کامل

Roles of Weight Functions to a Nonlocal Porous Medium Equation with Inner Absorption and Nonlocal Boundary Condition

and Applied Analysis 3 He studied the asymptotic behavior of solutions and found the influence of weight function on the existence of global and blow-up solutions. Wang et al. 10 studied porous medium equation with power form source term ut Δu u, x, t ∈ Ω × 0, ∞ , 1.8 subjected to nonlocal boundary condition 1.2 . By virtue of the method of upper-lower solutions, they obtained global existence,...

متن کامل

Blow-up at the Boundary for Degenerate Semilinear Parabolic Equations

This paper concerns a superlinear parabolic equation, degenerate in the time derivative. It is shown that the solution may blow up in finite time. Moreover it is proved that for a large class of initial data blow-up occurs at the boundary of the domain when the nonlinearity is no worse than quadratic. Various estimates are obtained which determine the asymptotic behaviour near the blow-up. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999